Matrix Stability Analysis#

In the matrix method of stability analysis, the numerical solution at every grid point at time step \(n+1\) is expressed in terms of the values at time step \(n\) as:

(44)#\[ \mathbf{u}^{n+1}=F\mathbf{u}^{n}, \]

where \(\mathbf{u}^{n}=u_{m=0,1,\dotsc,M}^n\) and \(F\) is a matrix that represents the finite-difference operator.

Let us consider again the FTCS scheme for the diffusion equation.

We can write (41) as

\[ u_m^{n+1} = \tau u_{m-1}^{n} + (1-2\tau)u_{m}^{n} + \tau u_{m+1}^{n}, \quad \tau=D\frac{\Delta t}{\Delta x^2}, \]

which, if we take \(u_0^n=u_M^n=0\), can be cast in matrix form as:

(45)#\[\begin{split} \begin{bmatrix} u_1^{n+1}\\ u_2^{n+1}\\ u_3^{n+1}\\ \vdots\\ u_{M-1}^{n+1} \end{bmatrix} = \begin{bmatrix} 1-2\tau & \tau & 0 & 0 & \cdots & 0 & 0 \\ \tau & 1-2\tau & \tau & 0 & \cdots & 0 & 0 \\ 0 & \tau & 1-2\tau & \tau & \cdots & 0 & 0 \\ \vdots & & & & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \tau & 1-2\tau \end{bmatrix} \begin{bmatrix} u_1^{n}\\ u_2^{n}\\ u_3^{n}\\ \vdots\\ u_{M-1}^{n} \end{bmatrix}. \end{split}\]

From (45) we can define the recurrence relationship

(46)#\[ \mathbf{u}^{n+1}=F\mathbf{u}^{n}=F(F\mathbf{u}^{n-1})= \cdots = (F)^{n+1}\mathbf{u}^{0}, \]

which makes it clear that the stability of the scheme is related to the matrix \(F\), as \(|\mathbf{u}^{n+1}/\mathbf{u}^{n}|=|F|\), where \(|F|\) is a norm of \(F\).

A suitable norm of \(F\) is the spectral norm:

\[ |F|=\rho(F)^{1/2} \]

where \(\rho(F)\) is the spectral radius of \(F\).

For \(F\) in (45), each eigenvalue \(l_p\) and eigenvactor \(\mathbf{v}_p\) satisfies

\[ F\mathbf{v}_p = l_p\mathbf{v}_p, \quad p=1,2,\dotsc,M-1. \]

If the eigenvectors form a complete, linearly independent set, they form a basis with which an arbitrary initial condition \(\mathbf{u}_0\) can be expressed as:

(47)#\[ \mathbf{u}^0=\sum_{p}\alpha_p\mathbf{v}_p, \quad \alpha_p \text{ constant }. \]

For most cases of common interest, \(F\) indeed has a complete set of eigenvectors

and we can write:

\[\begin{split} \mathbf{u}^{n+1}=(F)^{n+1}\mathbf{u}^0=(F)^{n+1}\sum_{p}\alpha_p\mathbf{v}_p\\ =\sum_{p}\alpha_p(F)^{n+1}\mathbf{v}_p=\sum_{p}\alpha_p(F)^{n}F\mathbf{v}_p, \end{split}\]

or

\[ \mathbf{u}^{n+1}=\sum_{p}\alpha_p(l_p)^{n+1}\mathbf{v}_p. \]

For the scheme to be stable, \(\mathbf{u}^{n+1}\) must remain bounded, which implies

\[ |l_p|\leq 1, \quad \text{for all } p. \]

The effec of a particular \(l_p\) in the numerical solution will be:

  • Amplifying, if \(|l_p|> 1\).

  • Neutral, if \(|l_p|= 1\).

  • Damping, if \(|l_p|< 1\).

Returning to the numerical solution of the diffusion equation (45), we write:

\[ F = I + \tau G, \]

with

\[\begin{split} G= \begin{bmatrix} -2 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 & 0 \\ \vdots & & & & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & -2 \end{bmatrix} \end{split}\]

so that \(F=f(G)\) and thus \(l_p=f(g_p)\), where the \(g_p\) are the eigenvalues of G.

Since \(G\) is tridiagonal with structure \(a,b,c\), the \(g_p\) are

\[ g_p = b + 2\sqrt{ac}\cos\frac{p\pi}{M}=-2 + 2\cos\frac{p\pi}{M}, \quad p=1,2,\dotsc,M-1 \]

and the \(l_p\) are

\[ l_p = 1-2\tau(1-\cos\frac{p\pi}{M})=1-2\tau(2\sin^2\frac{p\pi}{2M})=1-4\tau\sin^2\frac{p\pi}{2M}), \quad p=1,2,\dotsc,M-1, \]

which is the same as (42), leading to the same stability condition as the Von Neumann stability analysis method.